

PERRY JOHNSON LABORATORY ACCREDITATION, INC.

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Organization of:

AES Scales, LLC
12601 Eckel Road, Perrysburg, OH 43551

*and hereby declares that the Organization is accredited in accordance with
the recognized International Standard:*

ISO/IEC 17025:2017

Whereby, technical competence has been confirmed for the associated scope supplement, in the fields of:

Mass, Force, and Weighing Devices Calibration
(As detailed in the supplement)

Accreditation claims for conformity assessment activities shall only be made from the addresses referenced within this certificate and shall apply solely to those activities identified in the related scope. This Accreditation is granted subject to the Accreditation Body rules governing the Accreditation referred to above, and the Organization hereby commits to observing and complying with those rules in their entirety.

For PJLA:

Tracy Szerszen
President

Perry Johnson Laboratory
Accreditation, Inc. (PJLA)
755 W. Big Beaver, Suite 1325
Troy, Michigan 48084

Initial Accreditation Date: *Issue Date:* *Expiration Date:*

November 19, 2003 February 12, 2026 April 30, 2028

Accreditation No.: *Certificate No.:*
59052 L26-115

*The validity of this certificate is maintained through ongoing assessments based
on a continuous accreditation cycle. The validity of this certificate should be
confirmed through the PJLA website: www.pjilabs.com*

Certificate of Accreditation: Supplement

AES Scales, LLC

12601 Eckel Road, Perrysburg, OH 43551

Contact Name: Chris Strayer Phone: 419-874-3565

Accreditation is granted to the facility to perform the following conformity assessment activities:

FIELD OF CALIBRATION	MEASURED INSTRUMENT, QUANTITY OR GAUGE	RANGE (AND SPECIFICATION WHERE APPROPRIATE)	EXPANDED MEASUREMENT UNCERTAINTY (\pm) ¹	CALIBRATION EQUIPMENT AND REFERENCE STANDARDS USED	CALIBRATION MEASUREMENT METHOD OR PROCEDURES USED	FLEX CODE	LOCATION OF ACTIVITY
Mass, Force, and Weighing Devices	Balances	1 mg to 20 000 g	$(1.16 \times 10^{-2} + 1.15 \times 10^{-4} W_t) g$	Class F Weights	NIST Handbook 44	F1, F2	F, O
Mass, Force, and Weighing Devices	Bench Scales	0.5 lb to 500 lb	$(1.16 \times 10^{-2} + 9.48 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	F, O
Mass, Force, and Weighing Devices	Counting Scales	0.5 lb to 500 lb	$(1.16 \times 10^{-2} + 9.48 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	F, O
Mass, Force, and Weighing Devices	Floor Scales	1 lb to 20 000 lb	$(1.15 \times 10^{-2} + 1.15 \times 10^{-4} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	F, O
Mass, Force, and Weighing Devices	Truck Scales	500 lb to 100 000 lb	$(11.52 + 4.81 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Truck Scales	100 000 lb to 200 000 lb	$(18.98 + 6.84 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Hopper Scales	500 lb to 100 000 lb	$(11.52 + 4.81 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Hopper Scales	100 000 lb to 200 000 lb	$(18.98 + 6.84 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Crane Scales	500 lb to 100 000 lb	$(11.52 + 4.81 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Crane Scales	100 000 lb to 200 000 lb	$(18.98 + 6.84 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Rail Scales	500 lb to 100 000 lb	$(11.52 + 4.81 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O
Mass, Force, and Weighing Devices	Rail Scales	100 000 lb to 200 000 lb	$(18.98 + 6.84 \times 10^{-5} W_t) lb$	Class F Weights	NIST Handbook 44	F1, F2	O

Certificate of Accreditation: Supplement

AES Scales, LLC

12601 Eckel Road, Perrysburg, OH 43551
Contact Name: Chris Strayer Phone: 419-874-3565

Accreditation is granted to the facility to perform the following conformity assessment activities:

1. The CMC (Calibration and Measurement Capability) stated for calibrations included on this scope of accreditation represents the smallest measurement uncertainty attainable by the laboratory when performing a more or less routine calibration of a nearly ideal device under nearly ideal conditions. It is typically expressed at a confidence level of 95 % using a coverage factor k (usually equal to 2). The actual measurement uncertainty associated with a specific calibration performed by the laboratory will typically be larger than the CMC for the same calibration since capability and performance of the device being calibrated and the conditions related to the calibration may reasonably be expected to deviate from ideal to some degree.
2. The laboratories range of calibration capability for all disciplines for which they are accredited is the interval from the smallest calibrated standard to the largest calibrated standard used in performing the calibration. The low end of this range must be an attainable value for which the laboratory has or has access to the standard referenced. Verification of an indicated value of zero in the absence of a standard is common practice in the procedure for many calibrations but by its definition it does not constitute calibration of zero capacity.
3. Location of activity:

Location	Location
Code	
F	Conformity assessment activity is performed at the CABs fixed facility
O	Conformity assessment activity is performed onsite at the CABs customer location
4. Measurement uncertainties obtained for calibrations performed at customer sites can be expected to be larger than the measurement uncertainties obtained at the laboratories fixed location for similar calibrations. This is due to the effects of transportation of the standards and equipment and upon environmental conditions at the customer site which are typically not controlled as closely as at the laboratories fixed location.
5. The term Wt represents weight in pounds or grams (including SI multiple and submultiple units) appropriate to the uncertainty statement.